David B. Papworth

Intel Corporation

This inside look at a

large microprocessor
developmen‘t project
reveals some of the
reasoning (for goals,
changes, trade-offs,
and performance
simulation) that lay

bebind its final form.

8 IEEE Micro

TUNING THE
PENTIUM PRO
MICROARCHITECTURE

esigning a wholly new microproces-
sor is difficult and expensive. To jus-
tfy this effort, a major new
microarchitecture must improve performance
one and a half or two times over the previ-
ous-generation microzarchitecture, when eval-
uated on equivalent process technology. In
addition, semiconductor process technology
continues to evolve while the processor
design is in progress. The previous-genera-
tion microarchitecture increases in clock
speed and performance due to compactions
and conversion to newer technology. A new
microarchitecture must “intercept” the process
technology to achieve a compounding of
process and microarchitectural speedups.
The process technology, degree of

pipelining, and amount of effort a team is

willing to spend on circuit and layout issues
determine the clock speed of a microarchi-
tecture. Typically, a microarchitecture will
start with the same clock speed as a prior
microarchitecture (adjusted for process tech-
nology scaling). This enables the maximum
reuse of past designs and circuits, and fits
the new design to the existing product
development tools and methodology.
Performance enhancements should come
primarily from the microarchitecture and not
from clock speed enhancements per se.
Often, a new processor’s die area is close
to the maximum that can be manufactured.
This design choice stems from marketplace
competitiveness and efforts to get as much
performance as possible in the new microar-
chitecture. While making the die smaller and
cheaper and improving performance are
desirable, it is generally not possible to
achieve a 1.5-to-2-times-better performance
goal without using at least 1.5 to 2 times a
prior design’s transistors.
. Finally, new processor designs often
incorporate new features. As the perfor-

mance of the core logic improves, designs
must continue to enhance the bus and cache
architecture to keep pace with the core.
Further, as other technologies (such as mul-
tiprocessing) mature, there is a natural ten-
dency to draw them into the processor
design as a way of providing additional fea-
tures and value for the end user.

Mass-market designs

The Jarge installed base and broad range
of applications for the Intel architecture
place additional constraints on the design,
constraints beyond the purely academic
ones of performance and clock frequency.
We do not have the flexibility to control soft-
ware applications, compilers, or operating
systems in the same way system vendors
can. We cannot remove obsolete features
and must cater to a wide variety of coding
styles. The processor must run thousands of
shrink-wrapped applications, rather than
only those compiled by a vendor-provided
compiler running on a vendor-provided
operating system on a vendor-provided plat-
form. These limitations leave fewer avenues
for workarounds and the processor exposed
to a much greater variety of instruction
sequences and boundary conditions.

Intel’s architecture has accumulated a
great deal of history and features in 15 years.
The product must deliver world-class per-
formance and also successfully identify and
resolve compatibility issues. The micro-
processor may be-an assemblage of pieces
from many different vendors,‘yet must func-
tion reliably and be easy for the general pub-
lic to use.

Since a new design needs to-be manufac-
turable in high volume from the very begin-
ning, designers cannot allow thé.design to
expand to the limits of the technology. It
also must meet stringent environmental and

0272-1732/96/$5.00 © 1996 IEEE

design-life limits. It must deliver high performance using a
set of motherboard components costing less than a few hun-
dred dollars.

Meeting these additional design constraints is critical for
business success. They add to the complexity of the project
and the total effort required, compared to a brand-new
instruction set architecture. The additional complexity results
in extra staffing and longer schedules. A vital ingredient in
long-term success is proper planning and management of
the demands of extra complexity; management must ensure
that the complexity does not impact the product’s long-term
performance and availability.

Our first effort

After due consideration of the performance, area, and
mass-market constraints, we knew we would have to imple-
ment out-of-order execution and register renaming to wring
more instruction level parallelism out of existing code.
Further, the modest register file of the Intel architecture con-
strains any compiler. That is, it limits the amount of instruc-
tion reordering that a compiler can do to increase superscalar
parallelism and basic block size. Clearly, a new microarchi-
tecture would have to provide some way to escape the con-
straints of false dependencies and provide a form of dynamic
code motion in hardware.

To conform to projected Pentium processor goals, we ini-
tially targeted a-100-MHz clock speed using 0.6-micron tech-
nology. Such a clock speed would have resulted in roughly
a 10-stage pipeline. It would have much the same structure
as the Pentium processor with an extra decode stage added
for more instruction decode bandwidth. It would also require
extra stages to implement register renaming, runtime sched-
uling, and in-order retirement functions.

We expected a two-clock data cache access time (like the
Pentium processor) and other core execution units that would
strongly resemble the Pentium processor. The straw-man
microarchitecture would have had the following components:

* a 100-MHz clock using 0.6-micron technology,

e a 10-stage pipeline,

¢ four-instruction decoding per clock cycle,

e four-micro-operation renaming and retiring per clock
cycle,

e a 32-Kbyte level-1 instruction cache,

¢ a separate 32-Kbyte L1 data cache,

e two general load/store ports, and

¢ atotal of 10 million transistors.

From the outset we planned to include a full-frequency,
dedicated L2 cache, with some flavor of advanced packag-
ing connecting the cache to the processor. Our intent was to
enable effective shared-memory multiprocessing by remov-
ing the processor-to-L2 transactions from the traditional glob-
al interconnect, or front-side, bus, and to facilitate board and
platform designs that could keep up with the high-speed
processor. Remember that in 1990/1991 when we began the
project, it was quite a struggle to build 50- and 66-MHz sys-
tems. It seemed prudent to provide for a package-level solu-
tion to this problem.

Terminology

This article uses “performance™ to mean work done
per unit time. We termed a time reduction of 13 (100
scconds to 07 seconds) to be a performance improve-
ment of 30 percent. A clock-per-instruction degradation
of 20 pereent results in a program tuking 20 percent
longer at a constant clock rate, which amounts 1o a per-
formance degradation of 20 pereent over the bascline.

What we actually built
The actual Pentium Pro processor looks much different
from our first straw man:

e a 150-MHz clock using 0.6-micron technology,

* a l4-stage pipeline,

e three-instruction decoding per clock cycle,

e three micro-operations (micro-ops) renamed and retired
per clock cycle,

e an 8-Kbyte L1 instruction cache,

s an 8-Kbyte L1 data cache,

¢ one dedicated load port and one store port, and

e 5.5 million transistors.

The evolution process

Our first efforts centered on designing and simulating a
high-performance dynamic-execution engine. We attacked
the problems of renaming, scheduling, and dispatching, and
designed core structures that implemented the desired
functionality.

Circuit and layout studies overlapped this effort. We dis-
covered that the basic out-of-order core and the functional
units could run at a higher clock frequency than 100 MHz.
In addition, instruction fetching and decoding in two pipeline
stages and data cache access in two clock cycles were the
main frequency limiters.

One of our first activities was to create a microarchitect’s
workbench. Basically, this was a performance simulator
capable of modeling the general class of dynamic execution
microarchitectures. We didn’t base this simulator on silicon
structures or detailed modeling of any particular implemen-
tation. Instead, it took an execution trace as input and
applied various constraints to each instruction, modeling the
functions of decoding, renaming, scheduling, dispatching,
and retirement. It processed one micro-operation at a time,
from decoding until retirement, and at each stage applied
the limitations extant in the design being modeled.

This simulator was very flexible in allowing us to model
any number of possible architectures. Modifying it was much
faster than modifying a detailed, low-level implementation,
since there was no need for functional correctness or rout-
ing signals from one block to another. We set up this simu-
lator to model our initial straw-man microarchitecture and
then performed a sensitivity analysis of the major microar-
chitectural areas that affect performance, clock speed, and
die area.

We simulated each change or potential change against at
least 2 billion instructions from more than 200 programs. We

April 1996 9

Address generation unit
Bus interface unit

Branch target buffer

Data cache unit
Floating-point execution unit
Instruction decoder

Integer execution unit
Instruction fetch unit (includes 1-cache)
Level-2 cache
Microinstruction sequencer
Memory interface unit
Memory reorder buffer
Register alias table

Reorder buffer

Retirement register file
Reservation station

studied the effects of L1 cache size, pipeline depth, branch The trade-off)

prediction effectiveness, renaming width, reservation station Based on our circuit studies, we explored what would
depth and organization, and reorder buffer depth. Quite happen if we boosted the core frequency by 1.5 times over
often, we found that our initial intuition was wrong and that our initial straw man. This required a few simple changes to
every assumption had to be tested and tuned to what was the reservation station, but clearly we could build the basic
proven to work. core to operate at this frequency. It would allow us to retain

10 IEEE Micro

Pentium Pro (continued)

Following renaming, the operations wait in a 20-entry
reservation station (RS) until all of their operands are
data ready and a functional unit is available. As many as
5 micro-ops per clock can pass from the reservation sta-
tion to the various execution units. These units perform
the desired computation and send the result data back
to data-dependent micro-ops in the reservation stations,
as well as storing the result in the reorder buffer (ROB).

The reorder buffer stores the individual micro-ops in
the original program order and retires as many as three
per clock in the retirement register file (RRF). This file
examines each completed micro-op for the presence of
faults or branch mispredictions, and aborts tusther retire-
ment upon detecting such a discontinuity. This reim-
poses the sequential fault model and the illusion of a
microarchitecture that executes cach instruction in strict
sequential order.

The L1 data cache unit (DCID acts as one of the exe-
cution units. It can accept a new load or store operation
every clock and has a data latency of three clocks for
loads. It contains an 8-Kbyte, two-way associative cache
array plus fill buffers to buffer data and track the status
of as many as four simultancously outstanding data
cache misses.

The bus interface unit (BIU) processes cache misses.
This unit manages the 1.2 cache and its associated 64-
bit, full-frequency bus, as well as the front-side system
bus, which typically operates at a fraction of the core
frequency, such as 66-MHz on a 200-MHz processor.
Transactions on the front-side and dedicated buses are
organized as 32-byte cache line transfers. The overall
bus architecture permits multiple Pentium Pro proces-
sors to be interconnected on the front-side bus to form
a glueless. symmetric, shared-memorv multiprocessing
system.

For a detailed discussion of the microarchitecture, see
Colwell and Steck,! the Intel Web site.? and Gwennap.?

References

1. R. Colwell and R. Steck, “A 0.6-um BiICMOS
Microprocessor with Dynamic Execution,” Proc. Int'l Solid-
State Circuits Conf., |EEE, Piscataway, N.J., 1995, pp. 176~
177.

2. http/Avww.intel.com/procs/p6/pbwhite/index.htmi (tntel’s
World Wide Web site) .

3. L. Gwennap, "Intel’'s P6 Uses Decoupled Superscalar
Design,” Microprocessor Report, Vol. 9, No. 2, Feb. 16,
1995, pp. 9-15.

single-cycle execution of basic arithmetic operations at a 50
percent higher frequency. The rest of the pipeline would
then have to be retuned to use one-third fewer gates per
clock than a comparable Pentium microarchitecture.

We first added a clock cycle to data cache lookup, chang-
ing it from two to three cycles. We used the performance

50

40

Linear

speeduy
30 peeaup ‘</
20 / Point 4
10 Point 3

Performance delta (percentage)

Actual
00— speedup
Point 2
_10 Point 1 :
100 110 120 130 140 150
Frequency (MHz)

Figure 1. Delivered performance versus clock frequency.

simulator to model this change and discovered that it result-
ed in a 7 percent degradation (increase) in clock cycles per
instruction.

The next change was to rework the instruction fetch/
decode/rename pipeline, resulting in an additional two stages
in the in-order fetch pipeline. Retirement also required one
additional pipe stage. This lengthening resulted in a further
clock-per-instruction (CPI) degradation of about 3 percent.

Finally, we pursued a series of logic simplifications to
shorten critical speed paths. We applied less aggressive orga-
nizations to several microarchitecture areas and experienced
another 1 percent in CPI loss.

The high-frequency microarchitecture completes instruc-
tions at a 50 percent higher rate than the lower frequency
microarchitecture, but requires 11 percent more of the now-
faster clocks per 100 instructions to enable this higher fre-
quency. The net performance is (1.5/1.0) * (1.0/1.11) = 1.35,
or a 35 percent performance improvement—a very signifi-
cant gain compared to most microarchitecture enhancements.

In Figure 1 we see that performance generally improves
as clock frequency increases. The improvement is not linear
or monotonic, however. Designers must make a series of
microarchitectural changes or trade-offs to enable the high-
er frequency. This in turn results in “jaggies” or a CPI degra-
dation and performance loss at the point at which we make
a change. The major drop shown at point 1 represents the 7
percent CPI loss due to the added data cache pipe stage. The
series of minor deflections at points 2, 3, and 4 shows the
effect of added front-end pipe stages. The overall trend does
not continue indefinitely, as the CPI starts to roll off dra-
matically once the central core no longer maintains one-clock
latency for simple operations.

The right of this graph shows a fairly clear performance
win, assuming that one picks a point that is not in the val-
ley of one of the CPI dips, and assuming that the project can
absorb the additional effort and complexity required to hit
higher clock speeds.

When we first laid out the straw man, we did not expect
the CPI-clock frequency curve to have this shape. Our ini-

April 1996 11

Our initial intuition suggested
that the cost of an extra clock
of latency on loads would be

more severe than it actually is.

tial intuition suggested that the cost of an extra clock of laten-
cy on loads would be more severe than it actually is. Further,
past industry experience suggests that high frequency at the
expense of deep pipelines often results in a relative stand-
still in performance for general-purpose integer code.
However, our performance simulator showed the graphed
behavior and the performance win possible from higher
clock speeds. Since we had carefully validated the simulator
with micro-benchmarks (to ensure that it really modeled the
effect in question), we were inclined to believe its results
over our own intuition and went ahead with the modified
design. We did, however, work to come up with qualitative
explanations of the results, which follow.

Consider a program segment that takes 100 clock cycles at
100 MHz. The baseline microarchitecture takes 1 microsecond
to execute this segment. We modify this baseline by adding
an extra pipe stage to loads. If 30 percent of all operations are
loads, this would add 30 clocks to the segment, and take 130
clocks to execute. If the extra pipe stage enables a 50 per-
cent higher frequency, the total execution time becomes
130/150 or 0.867 microseconds. This amounts to a 15 percent
performance improvement (1/0.867). This is certainly a high-
er performance microarchitecture but hardly the 50 percent
improvement one might naively expect from clock rate alone.
Such a result is typical of past experience with in-order
pipelines when we seek the CPI-frequency balance.

The Peatium Pro microarchitecture does not suffer this
amount of CPI degradation from increased load latency
because it buffers multiple loads, dispatches them out of
order, and completes them out of order. About 50 percent of
loads are not critical from a dataflow perspective. These loads
(typically from the stack or from global data) have their
address operands available early. The 20-entry reservation
station in the Pentium Pro processor can buffer a large pocl
of micro-ops, and these “data-ready” load micro-ops can
bubble up and issue well ahead of the critical-path opera-
tions that need their results. For this class of loads, an extra
clock of load latency does not impact performance.

The remaining 50 percent of the loads have a frequent
overlap of multiple critical-path loads. For example, the code
fragment a2 = b + ¢ might compile into the sequence

load b =>rl

load ¢ => 12

rl plus r2 =>r3

Both b and ¢ are critical-path loads, but even if each takes

an'extra clock of latency, only one extra clock is added for

12 IEEE Micro

both, assuming loads are pipelined and nonblocking. This
blocking-factor effect varies, depending upon the program
mix. But a rule of thumb for the Pentium Pro processor is
that additional clocks of load latency cost approximately half
of what they do in a strict in-order architecture.

Thus the 15 percent of micro-ops that are critical-path
loads take an extra clock, but the overlap factor results in
one half of the equivalent in-order penalty, or about 7.5 per-
cent. This is close to what we measured in the detailed sim-
ulation of actual code. .

Now let’s look at the effect of additional fetch pipeline
stages. If branches are perfectly predicted, the fetch pipeline
can be arbitrarily long, at no performance cost. The cost of
extra pipe-stages comes only on branch mispredictions. If
20 percent of the micro-ops are branches, and branch pre-
diction is 90 percent accurate, then two micro-ops in 100 are
mispredictions. Each additional clock in the fetch pipeline
will add one clock per misprediction. If the base CPI is about
1, we'll see about two extra clocks per 100 micro-ops or and
additional 2 percent per pipe stage. The actual penalty is
somewhat less, because branch prediction is typically better
than 90 percent, and there is a compound-interest effect. As
the pipeline gets longer, the CPI degrades and the cost of
yet another pipe stage diminishes.

Clock frequency versus effort

This all sounds like a fine theoretical basis for building a
faster processor, but it comes at a nontrivial cost. Using a
higher clock frequency reduces the margin for error in any
one pipe stage. The consequence of needing one too many
gates to get the required functionality into a given pipe stage
is a 9 to 10 percent performance loss, rather than a 4 to 5
percent loss. So the design team must make a number of
small microarchitecture changes as the design matures, since
it is impossible to perfectly anticipate every critical path and
design an ideal pipeline. This results in rework and a longer
project schedule. Further, with short pipe stages, many paths
cannot absorb the overhead of logic synthesis, increasing
the proportion of the chip for which we must hand-design
circuits. . ‘

Higher clock speeds require much more hand layout and
careful routing. The densities achievable by automatic place-
ment and routing are often inadequate to keep parasitic
delays within what will fit in a clock cycle. Beyond that, the
processor spends a bigger fraction of each clock period on
latched delay, set-up time, clock skew, and parasitics than
with a slower, wider pipeline. This puts even more pressure
on designers to limit the number of gates per pipe stage.

The higher performance that results from higher clock
speeds places more pressure on the clock and power distri-
bution budget. The shorter clock period is less able to absorb
clock jitter and localized voltage sags, requiring very careful
and detailed speed path simulations.

As long as a design team expects, manages, and supports this
extra effort, clock speedups provide an excellent path to high-
er performance. Even if this comes at some CPI degradation,
the end result is both a higher performance product and one
that hits production earlier than one that attempts to retrofit
higher clock frequency into a pipeline not designed for it.

The terms “architectural efficiency” or “performance at the
same clock” are sometimes taken as metrics of goodness in
and of themselves. Perhaps this is one way of apologizing for
low clock rates or a way to imply higher performance when
the microarchitecture “someday” reaches a clock rate that is
in fact unobtainable for that design with that process tech-
nology. Performance at the same clock is not a good microat-
chitectural goal, if it means building bottlenecks into the
pipeline that will forever impact clock frequency. Similarly,
low latency by itself is not an important goal. Designers must
consider the balance between latency, available parallelism
in the application, and the impact on clock speed of forcing
a lot of functionality into a short clock period.

It is equally meaningless to brag about high clock fre-
quency without considering the CPI and other significant
performance trade-offs made to achieve it. In designing the
Pentium Pro microarchitecture, we balanced our efforts on
increasing frequency and reducing CPL. As architects, we
spent the same time working on clock frequency and layout
issues as on refining parallel-execution techniques. The true
measure of an architecture is delivered performance, which
is clock speed/CPI and not optimal CPI with low clock speed
or great clock speed but poor CPL.

One final interesting result was that the dynamic-execution
microarchitecture was actually a major enabler of higher
clock frequency. In 1990, many pundits claimed that the

-complexity of out-of-order techniques would ultimately lead
to a clock speed degradation, due to the second-order effects
of larger die size and bigger projects with more players. In
the case of the Pentium Pro processor, we often found that
dynamic execution enabled us to add pipe stages to reduce
the number of critical paths. We did not pay the kind of CPI
penalty that an in-order microarchitecture would have suf-
fered for the same change. By alleviating some of the data-
path barriers to higher clock frequency, we could focus our
efforts on the second-order effects that remained.

Tuning area and performance

Another critical tuning parameter is the trade-off between
silicon area and CPU performarice. As designers of a new
microarchitecture, we are always tempted to add more capa-
bility and more features to try to hit as high a performance
as possible. We try to guesstimate what will fit in a given
level of silicon technology, but our early estimates are gen-
erally optimistic and the process is not particularly accurate.

As we continued to refine the Pentium Pro microarchi-
tecture, we discovered that, by and large, most applications
do not perform as well as possible, being unable to keep all
of the functional units busy all of the time. At the same time,
better understanding of layout issues revealed that the die
size of the original microarchitecture was uncomfortably
large for high-volume manufacturing.

We found that the deep buffering provided by the large,
uniform reservation station allowed a time-averaging of func-
tional-unit demand. Most program parallelism is somewhat
bursty (that is, it occurs in nonuniform clumps spread
through the application). The dynamic-execution architec-
ture can average out bursty demands for functional units; it
draws micro-ops from a large range of the program and dis-

It is equally meaningless to
brag about high clock
frequency without considering
the CPI and other significant
performance trade-offs made

to achieve it.

patches them whenever they and a functional unit become
ready. No particular harm comes from delaying any one
micro-op, since a micro-op can execute in several different
clocks without affecting the critical path through the flow
graph. This contrasts with in-order superscalar approaches,
which offer only one opportunity to execute an operation
that will not result in adding a clock or more to the execu-
tion time. The in-order architecture runs in feast-or-famine
mode, its multiple functional units idle much of the time and
only coming into play when parallelism is instantaneously
available to fit its available templates.

The same phenomenon occurs in the instruction decoder.
A decoder for a complex instruction set will typically have
restrictions (termed “templates” here) placed upon it. This
refers to the number and type of instructions that can be
decoded in any one clock period. The Pentium Pro’s decoder
operates to a 4-1-1 template. It decodes up to three instruc-
tions each clock, with the first decoder able to handle most
instructions and the other two restricted to single dataflow
nodes (micro-ops) such as loads and register-to-register. A
hypothetical 4-2 template could decode up to two instruc-
tions per clock, with the second decoder processing stores
and memory-to-register instructions as well as single micro-
op instructions.

The Pentium Pro’s instruction decoder has a six-micro-op
queue on its output, and the reservation station provides a
substantial amount of additional buffering. If a template
restriction forces a realignment, and only two micro-ops are
decoded in a clock, opportunities exist to catch up in sub-
sequent clocks. At an average CPI of about 1, there is no
long-term need to sustain a decode rate of three instructions
per clock. Given adequate buffering and some overcapaci-
ty, the decoder can stay well ahead of the execution
dataflow. The disparity between CPI and the maximum
decode rate reduce the template restrictions to a negligible
impact.

After observing these generic effects, we performed sen-
sitivity studies on other microarchitecture aspects. We
trimmed each area of the preliminary microarchitecture until
we noted a small performance loss.

For example, we observed that each of the two load/store
ports were used about 20 percent of the time. We surmised
that changing to one dedicated load port and one dedicat-
ed store port should not have a large effect on performance.

April 1996 13

120

100 -

o]
S
|

Relative performance
(percentage)

N A O
o © o o
| | |

S A S B A
50 63 75 87 100 125 200 250

Relative area (percentage)

o
[&]

Figure 2. Performance versus die area for different
decoder designs.

The load port would operate about 30 percent of the time
and the store port at about 10 percent of the time. This
proved to be the case, with less than a 1 percent performance
loss for this change.

Changing from a 4-2-2-2 decode template (four instruc-
tions per clock) to a 4-2-2 template (three instructions per
clock) also was a no-brainer, with no detectable performance
change on 95 percent of programs examined.

We also changed the renaming and retirement ports from
fourmicro-ops per clock to three, which resulted in a slight-
ly larger, but still manageable 2 percent performance loss.

Finally, we reduced the L1 cache size from 16 to 8 Kbytes.
In doing this, we took advantage of the full-frequency ded-
icated bus we had already chosen. Since the L1 cache is back-
stopped by a full bandwidth, three-clock L2 cache, the extra
L1 misses that result from cutting the L1 cache size cause a

relatively minor 1.5 percent performance Joss.

The reduction from four- to three-way superscalar opera-
tion and the reduction in L1 cache size had some negative
impact on chest-thumping bragging rights, but we could not
justify the extra capacity by the delivered performance.
Further, tenaciously holding on to extra logic would have
resulted in significant negative consequences in die area,
clock speed, and project schedule.

As the design progressed, we eventually found that even
the first round of trimming was not enough. We had to make
further reductions to keep die size in a comfortable range,
and, as it turned out later, maintain clock frequency. This
required making further cuts, which resulted in detectable
performance loss, rather than the truly negligible losses from
the earlier changes.

We made two major changes. We cut back the decoder to
a 4-1-1 template from a 4-2-2 template. This amounted to
about a 3 percent performance loss. We also cut back the
branch target buffer from 1,024 to 512 entries, which barely
affected SPECint92 results (1 percent) but did hurt transac-
tion processing (5 percent). It was emotionally difficult (at the
time) for the microarchitecture team to accept the resulting
performance losses, but these results turned out to be criti-
cal to keeping the die area reasonable and obtaining a high
clock frequency. This kind of careful tuning and flexibility in
product goals was essential to the ultimate success of the
program. :

14 IEEE Micro

It is important to consider the actual shape of the area-
performance curve. Most high-end CPU designs operate well
past the knee of this curve. Efficiency is not a particularly
critical goal. For example, the market demands as much per-
formance as possible from a given technology, even when
that means using a great deal of silicon area for relatively
modest incremental gains

Figure 2 illustrates this effect. This graph charts the per-
formance of various instruction decoder schemes coupled
to a fixed execution core. All of the architectures discussed
earlier are clearly well past the knee of the performance
curve. Moving from point A (a 4-2-2-2 template) to point B
(4-2-2) is clearly the right choice, since the performance
curve is almost flat. Moving down to point C (4-1-1) shows
a detectable performance loss, but it is hardly disastrous in
the grand scheme of things. Point D (4-2—one we actually
considered at one time) occupies an awkward valley in this
curve, barely improved over point E (4-1) for significantly
more area and noticeably lower performance than point C.

As we converted the microarchitecture to transistors and
then to layout, execution quality became critical. All mem-
bers of the project team participated in holding the line on
clock frequency and area. Some acted as firefighters, han-
dling the hundreds of minor emergencies that arose.

This phase is very critical in any major project. If a project
takes shortcuts and slips clock frequency or validation to
achieve earlier silicon, the design often contains bugs and
suffers unrecoverable performance losses. This design phase -
determines a project’s ultimate success. The best planned
and most elegant microarchitecture will fail if the design team

does not execute implementations well. As CPU architects,

we were very fortunate to work with a strong design and
layout team that could realize our shared vision in the result-
ing silicon.

THE PENTIUM PRO PROCESSOR ran DOS, Windows,
and Unix within one week of receiving first silicon. We had
most major operating systems running within one month.
We made a series of small metal fixes to correct minor bugs
and speed paths. The A2 material, manufactured using a 0.6
micron process, ran at 133 MHz with a production-quality
test program, including 85 degree case temperature and 5
percent voltage margins).

The BO stepping incorporated several microcode bug and
speed path fixes for problems discovered on the A-step sil-
icon, and added frequency ratios to the front-side bus. Our
success with early Pentium Pro processor silicon, plus pos-
itive early data on the 0.35-micron process, encouraged us
to retune the L2 access pipeline. Retuning allowed for ded-
icated bus frequencies in excess of 200 MHz. We added one
clock to the L2 pipeline, splitting the extra time between
address delivery and path while retaining the full-core clock
frequency and the pipelined/nonblocking data access capa-
bility. The 0.6-micron BO silicon became a 150-MHz, pro-
duction-worthy part and met our goals for performance and
frequency using 0.6-micron Pentium processor technology.

We optically shrank the design to the newly available 0.35-

Table 1. Pentium Pro performance.

Processor
(0.35 micron, 200 MHz,
256-Kbyte L2 cache)

Processor
(0.6 micron, 150 MHz,
256-Kbyte L2 cache)

8.09 SPECint95
6.75 SPEC{p95

6.08 SPECINt95
5.42 SPECfp95

micron process, which allowed Intel to add a 200-MHz
processor to the product line. Table 1 shows the delivered
performance on some industry-standard benchmarks.

These results are competitive with every processor built
today on any instruction set architecture.

The Pentium Pro processor was formally unveiled on
November 1, 1995, 10 months after first silicon. Since then,
more than 40 systems vendors have announced the avail-
ability of computer systems based on the processor. In the
future, we will enhance the basic microarchitecture with mul-
timedia features and ever higher clock speeds that will
become available as the microarchitecture moves to 0.25-
micron process technology and beyond. B

David B. Papworth is a principal proces-
sor architect for Intel Corporation and one
of the senior architects of the Pentium Pro
processor. Earlier, he was director of engi-
neering for Multiflow Computer, Inc., and
one of the architects of the first commer-
cial VLIW processor. He holds a BSE
degree from the University of Michigan.

Direct comments regarding this article to the author at Intel
Corporation, JF1-19, 5200 N.E. Elam Young Parkway,
Hillsboro, OR 97124; papworth@ichips.intel.com.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.
Medium 160

Low 159 High 161

AT
YOUR
FINGERTIPS

Accurate, up-to-date
microprocessor and
microcontroller information

Visit IEEE Micro on the World Wide Web at
http:www.computer.org/pubs/micro/micro.htm
. and hyperlink to

w The February 1996 issue:

Table of Contents—with links to abstracts

Micro Law: Bulletin boards and Net sites

Micro Web: Three complete articles in
Adobe Acrobat format

Parallel Fiber-Optic SCI Links by
David R. Engebretsen, Daniel M. Kuchta,
Richard C. Booth, John D. Crow, and
Wayne G. Nation

Memory Channel Network for PCI by
Richard B. Gillett

The GigaRing Channel by Steve Scott

The December 1995 issue:
Six complete articles from the Fuzzy Hardware
series in Adobe Acrobat

§

Future-issue information-

How to contact the editorial board
and staff

How to subscribe

How to write for IEEE Micro

¥ §¢

IEEE Micro publishes detailed information about the design, -
performance, or application of microcomputer and micro-
processor systems. Microincludes tutorials, book and software
reviews, and economic and standards discussions. Adobe
Acrobat freeware allows Web users to view and search articles
on line and print them locally.

"MICRO

April 1996 15

